PAJARITO POWDER Pt and Pt Alloy on Engineered Catalyst Support™ (ECS) Pt040NP: 10% Pt/ECS-4005 Pt038NP: 20% Pt/ECS-4005 Pt039NP: 30% Pt/ECS-4005 Pt037NP: 40% Pt/ECS-4005 0123-11: 30% Pt/ECS-3701 1222-01A: 40% Pt/ECS-3701 Pt025NP: 50% Pt/ECS-3701 Pt057NP: 60% Pt/ECS-3701 Pt795: 50%-5% PtCo /ECS-3701 Pt048NP: 50%-5% PtCo /ECS-3701 Pajarito Powder develops and manufactures advanced PGM catalysts for PEM fuel cell (anode) and PEM and alkaline electrolyzer (cathode) utilizing proprietary Engineered Catalyst SupportTM (ECS) that leverage the attributes of interconnected mesoporous carbons (IMCs) to enhance and stabilize the PGM nanoparticles, while making the most effective use of the PGM surface area. # Pt and Pt Alloy Catalysts on ECS™ Fig. A ntensity (a.u) ntensity (a.u. (a.u.) ntensity MALAMORESTON Pajarito Powder PGM catalysts utilize Engineered Catalyst Supports[™] and a variety of Pt and Pt alloys. Figures to the right demonstrate X-Ray Diffractogram (XRD) crystallite size, which highlights our control over the size distribution of platinum and stabilized platinum alloy nanoparticles on ECS materials. Fig. A Highly Graphitic ECS 10-40 wt% Pt on ECS-004005, Pt crystallite <3 nm ## Fig. B Mesoporous ECS 30-60 wt% Pt on ECS-004601, Pt 2.8 nm ±0.3 nm #### Fig. C PtCo alloy on Mesoporous ECS 50-5 wt% PtCo on ECS-003701, Pt 2.5 nm ±0.3 nm - Pt795: 3.85Å lattice calculation, 99.5% alloyed - Pt048NP: 3.88 Å lattice calculation, 93.4% alloyed ## Fig. D PtNi alloy on Mesoporous ECS 50-5 wt% PtCo on ECS-003701, Pt 2.9 nm ±0.3 nm 3.83Å lattice calculation, 100% alloyed Fig. B Fig. D Pt 0 43NP: 50%-5% PtNi/ECS-3701 Intensity (a.u. 2-Theta (°) 2-Theta (°) 2-Theta (°) Fig.E #### CO_{ad} surface area vs. RH 100 Pt/ECS3701 Pt surface area (m²/g) 80 60 Pt/HSC-a 20 0 20 40 60 80 100 120 Inlet RH (%) H₂/air, 80 °C, 100% RH, 150 kPaa (50% Pt, 0.2 mg/cm²) ## 50 wt% Pt / ECS-003701™ 2-Theta (°) Presented at the DOE AMR by a partner of Pajarito Powder, Fig. E represents study materials utilizing ECS-003701, reflecting similar BOL performance to the reference catalyst but with substantially better EOL performance, demonstrating advantages of IMCs. Source: Durable Fuel Cell MEA through Immobilization of Catalyst Particle and Membrane DOE Project Award # DE-EE0008821 June 8, 2022 https://www.hydrogen.energy.gov/pdfs/review22/fc3 23_ramaswamy_2022_o.pdf